
Classification of benign and malignant masses in 

breast mammograms 

A. Šerifović-Trbalić*, A. Trbalić**, D. Demirović*, N. Prljača* and P.C. Cattin*** 

* Faculty of Electrical Engineering, University of Tuzla, Tuzla, Bosnia and Herzegovina 

** Drvodom d.o.o, Tuzla, Bosnia and Herzegovina 

*** Medical Image Analysis Center (MIAC), University of Basel, Basel, Switzerland 



Page 2 

29 May, 2014   DC VIS - Distributed Computing, Visualization and Biomedical Engineering    www.mipro.hr 

Introduction 

• Breast cancer represents the major cause of death 
by cancer among women.  

• Most breast cancer tumors at earlier stages are 
benign and not yet malignant and life-threatening. 

• The early detection of the breast cancer masses 
can increase the survival rate for patients.  

• Mammography has been one of the most reliable 
methods for early detection and diagnosis of the 
breast cancer, typically through detection of 
characteristic masses and/or microcalcification. 
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Introduction 

• An accurate and efficient computer-aided 
mammography diagnosis system plays an 
important role as a second opinion to assist 
radiologists. 

• Finding an accurate and robust computer-
aided diagnosis system for the classification 
of the abnormalities in the mammograms still 
remains a challenge. 

• In the past two decades, a lot of research has 
been invested in computer-aided analysis 
and diagnosis of breast mammograms. 
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Materials and methods 

• Proposed method consists of 
four major stages: 
– Image preprocessing - used to 

suppress noise and improve 
the contrast of the image; 

– Image segmentation - used to 
identify the masses in 
mammograms, i.e. to detect 
the Regions of Interest (ROI); 

– Feature extraction; 

– Classifications of masses. 
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Materials and methods – image preprocessing 

• It is used to improve the image quality. 

• This stage involves: 

– Image filtering using a two-dimensional (2D) 
median filter with a  neighborhood to reduce a 
digitization noises. 

– Image enhancement using contrast-limited 
adaptive histogram equalization (CLAHE). 

– The automatic thresholding and image border 
cleaning to suppress the light structures 
connected to the image border and thus to 
identify the foreground in the image. 
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Materials and methods – image segmentation 

• A multiclass Otsu’s 
thresholding has been used 
to find the Region of Interest 
(ROI).  

• It is: 
– a nonparametric and 

unsupervised method of 
automatic threshold selection 
for the image segmentation; 

– a simple procedure that 
utilizes the zeroth- and first-
order moments of the 
graylevel histograms and it 
maximizes the between class 
variances, while minimizing 
the within class variances. 
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 Different segmentation steps. (a) Original Image. (b) 

Image after marking foreground. (c) Obtained ROI. 



Page 7 

29 May, 2014   DC VIS - Distributed Computing, Visualization and Biomedical Engineering    www.mipro.hr 

Materials and methods – feature extraction 

• Zernike moments represent a set of descriptors 
obtained using complex kernel functions based on 
Zernike polynomials.  

• The computation of Zernike moments from an input 
image includes three steps:  
– computation of radial polynomials, 

– computation of Zernike basis functions, 

– computation of Zernike moments by projecting the image 
onto the Zernike basis functions. 

• A group of 32 low-order moments with different orders 
and iterations which satisfy the following conditions 
have been used: 
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Materials and methods – classification 

• Classification is conducted using resilient 
backpropagation neural networks. 

• These networks have following characteristics: 
– During training, the error must be propagated from 

the output layer back to hidden layer in order to 
perform the learning of the input-to-hidden weights; 

– Only the sign of the derivative is used to determine 
the direction of the weight update, while the size of 
the weight change is determined by a separate 
update parameter; 

– They are generally much faster than the standard 
steepest descent algorithm and it requires only a 
modest increase in memory consumptions 
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Experiments and results 

• The digital mammograms used for experimentation 
were taken from the Mammography Image Analysis 
Society (MIAS) database.  

• The input images were split in three sets intended for 
training, validation and testing of the neural network. 

• The number of hidden layers and their nodes are 
being changed until the best network topology, which 
yields the best accuracy, is found.  

• The final neural network consists of:  
– one input (32 nodes, sigmoid function),  

– one hidden (32 nodes, sigmoid function) and  

– one output layer (linear activation function).  
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Experiments and results 

• Through visual inspection of the segmented 

masses, it was noticed that: 

– the best result is for round-shape masses that have 

well-defined edges,  

– most false detections occurred for: 

•  non-circular cases with calcifications, which consist of very 

small spots in mammograms,  

• and speculated masses, which are not segmented quite well. 
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Experiments and results 

• As benchmark functions of proposed system the following terms 
were used: 
– the area under ROC (Receiver operating characteristic) curve; 

 

–   

 

–   

 

–   

 

  

where FP, FN, TP and TN denote false-positive, false-negative, true-
positive and true-negative answers, respectively.  
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Experiments and results 

The system yielded a malignant mass versus 

benign mass classification accuracy 

represented as an area under ROC curve of 

0.8920.  

Comparison with state-of-the-art methods 

based on sensitivity, specificity and accuracy 

Author’s name Sensitivity Specificity Accuracy (%) 

Menut et al. [4] -   --- 76.0 

Hussain [9] -   --- 99.0 

Gorgel et al. [16] 0.9470 0.7140 84.8 

Islam et al. [15] 0.9091 0.8371 --- 

Proposed method 0.9216 0.9608 90.4 
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Conclusion  

• A novel fully autonomous computer-aided diagnosis system 

has been presented for mass detection and classification in 

breast mammography images.  

• Input ROIs are obtained from the digital mammograms 

using image preprocessing and Otsu's N thresholding.  

• After the first stage, a group of 32 Zernike moments with 

different orders and iterations are extracted from the ROIs.  

• These moments have been applied to the resilient 

backpropagation neural network classifier.  

• Experimental results show that the proposed technique is 

able to classify efficiently malignant and benign mass types 

of abnormalities in digital mammograms.  
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